Lithium-ion polymer batteries, also known as lithium-polymer, or li-po for short, are awesome little pouches of energy that power our beloved smartphones, laptops, and tablets. Any portable gadget that requires lots of continuous power probably has a li-po battery as its heart. (Devices that require large bursts of power such as power tools and e-bikes tend to use hard-shell lithium-ion batteries, which behave slightly differently from li-po batteries.) Li-po batteries are one of the most energy-dense electrical storage options available, and under normal conditions, they’re perfectly safe to handle.
Yet stories of exploding batteries, rare as they may be, have captured the public’s imagination for reasons that are quite understandable. But what really happens if you’re fixing your phone, your tool slips, and you accidentally poke the battery? Images of scary explosions and chemical burns flash before your eyes—if you hurt the li-po in any way, it feels like a fiery response will be an inevitable outcome.
The iFixit team is here to mythbust the li-po’s explosive nature, and, in the process, show you how to prevent a wounded li-po from going postal. To do so, we’re going to dissect and stab a few batteries—for science.
The Anatomy of a Li-po Battery (a.k.a. “Spicy Pillow”)
A li-po battery is like a tightly packed fruit roll-up. Multiple layers of ultra-thin metals, plastic, and chemical slurries are stacked together, rolled tightly into a flat rectangle and stuffed into a foil pouch. The pouch is filled with a polymer-based electrolyte (hence the lithium polymer name) and sealed, making a single complete battery cell. Multiple cells are connected together in parallel or in series to make larger batteries. For a look at how these batteries are made, check out this in-depth video of an iPhone battery factory in action.
There are three major layers in a li-po battery: the cathode (+), insulating separator, and the anode (-).
The cathode (+) is a thin sheet of coated aluminum. The coating imparts different charge, discharge, capacity, and cycle characteristics and boasts fun names like Lithium Manganese Oxide (LMO) and Lithium Cobalt Oxide (LCO). The common denominator with all the coatings is lithium, a low-density metal that is a key factor in making the battery work.
The insulating separator is a flexible, semi-permeable sheet that physically separates the cathode (+) and anode (-) layers, while allowing lithium ions to flow through. Without it, the cathode and anode would touch each other and cause a short-circuit.
The anode (-) is a thin sheet of copper coated with a carbon material—normally graphite of some sort.
All of these layers are soaked in a gel-like electrolyte, which gives the lithium ions a medium to flow in. No ion flow = no energy. The electrolyte consists of a mixture of lithium, solvents, and additives—the amount of electrolyte strongly affects how much energy the li-po battery can store. The exact composition is different with every manufacturer and is a closely guarded trade secret for each.
The spicy ingredient isn’t the lithium
When a li-po battery catches on fire, it’s not the battery’s lithium content touching air/moisture that ignites the battery. Rechargeable li-ion batteries have very trace amounts of metallic lithium—not enough to supply the “oomph” necessary for ignition (unlike the non-rechargeable primary lithium batteries, which have quite a bit of metallic lithium and can ignite from moisture contact.) Rather, it’s the solvents in the electrolyte that are prone to fiery bouts.
Normally, the electrolyte is safely insulated from things that can set it off, but sometimes things (usually pointy) can change that. Let’s see what happens when something punctures a li-po battery.
Play-by-play of a thermal runaway
When you puncture a li-po battery, you break through the insulating layers and cause a localized short-circuit. All of the battery’s stored electrical energy wants to course through this short, and the resulting current flow superheats the spot—this is how a car’s cigarette lighter works. This hotspot vaporizes the surrounding electrolyte, which turns into CO2 gas mixed with very volatile solvents. It also heats this gas, and if the mixture reaches the flash point, the gas ignites! The heat from the fire vaporizes more electrolyte, creating a chain reaction known as thermal runaway. Boom! Battery fire.
When we punctured a fully charged iPhone 12 Pro Max battery, for instance, it immediately swelled up and glowed like a hot metallic croissant. Smoke and gasses spewed out the sides, and the vapors quickly caught on fire:
Once the thermal runaway begins, it’s very difficult to stop it. Like white-hot coals, you have to cool the reaction to a point where the electrolyte is no longer self-generating fuel and heat. The common approach to lithium-ion battery fires is to douse it with large amounts of water or wait for the battery to burn out, as seen in this Tesla Emergency Response Guide.
25% or (Com)bust
Since it’s so difficult to put out a li-po battery fire, it’s imperative to prevent it from happening in the first place. You can drastically reduce the chance of a thermal event by draining the battery to 25% or less. Without the stored potential energy, the battery has a difficult time generating the heat required to ignite the electrolyte, even when there’s a short-circuit. Puncturing a less than 25% charged battery might generate sparks and smoke, and the battery could get really hot, but it’s unlikely to catch on fire and enter thermal runaway mode.
To see for ourselves, we stabbed a 25% charged iPhone 12 Pro Max battery multiple times. The battery got hot (~120°C) and shot out some smoke and sparks, but that was about it.
This is why you’ll see a battery discharge note in our repair guides. We want to make the repair as safe as possible, and discharging the battery makes a big difference. Don’t skip this important step!
For your safety, discharge the battery below 25% before disassembling your phone. This reduces the risk of a dangerous thermal event if the battery is accidentally damaged during the repair. If your battery is swollen, take appropriate precautions.
iFixit repair guide warning
Note that discharging the battery for safety works only with smaller li-po batteries—like those found in phones and laptops (laptops have bigger batteries, but they’re also composed of smaller, individual li-po cells.) Tablets such as the 12.9” iPad Pro contain two large li-po cells. There may be enough stored energy to ignite the battery even if it’s discharged to below 25%. If you’re working around larger li-po cells, discharge the device to 0%. Don’t worry—you won’t damage your battery if it’s drained for a short time.
Also note that for most modern devices, li-ion batteries aren’t truly drained when your device shows 0%. When the battery’s low, the BMS (Battery Management System) board cuts it off when it drops below a voltage threshold—normally around 3.3 V. This leaves about 10-15% energy left in the battery, which prevents it from being irreversibly damaged. Just don’t leave it at 0% for weeks on end, or the battery can self-discharge below this safety threshold and become irreversibly damaged and swollen.
Help! I punctured a battery!
If you puncture a li-po battery during a repair, don’t panic! A punctured battery rarely explodes, but it can vent super hot fiery gas and spit out shards of hot shavings, which can cause severe burns. Inhaling the smoke and solvent is unhealthy, but rarely fatal.
If the battery doesn’t immediately react (because you’ve cleverly drained the battery and it was a minor jab), monitor the battery for five minutes. If it doesn’t warm up after five minutes, you can continue working on your device, but don’t reuse the battery. Even if the jab didn’t breach the outer pouch, the battery may have suffered internal structural damage and is a potential safety hazard.
If the battery warms up, set the device on a fire-resistant surface and give it a day for the battery to fully discharge. Once it’s discharged, the battery will be inert and cool to the touch. Remove and dispose of the battery properly. Don’t reuse the battery.
If the battery begins to thermally runaway, treat it as a Class B fire (the vaporized solvent is primarily fueling the fire). Use fire-resistant tools like a metal spatula to push the device onto a fire-resistant surface like a metal baking sheet. If possible, move the device outside to a safe location where the battery can burn itself out.
If you can’t move the device, you can smother the fire with sand, cool the reaction with a large amount of water, or cover it with a fireproof container. Even if you extinguish the fire, the battery will continue to smolder like a hot lump of coal. Monitor it until it fully cools down. Once it’s inert, dispose of the remnants properly.
Toasty Bonus: Free Battery Fire Wallpapers
As a reward for making it to the end of the post, here’s a wallpaper of a scorched iPhone 12 Pro Max. To get these as your background or lock screen: Navigate to this page on your phone. Tap a wallpaper to view it at full resolution, then save it to your photos. Open the Settings app, select “Wallpapers” and then “Choose a New Wallpaper.”
iPhone 12 Pro Max Melted Internals Wallpaper
iPhone 12 Pro Max Melted Internals Wallpaper (Dark Mode)
Hopefully these images will be the closest you’ll ever get to a battery fire! Practice safe battery handling procedures and remember: Only you can prevent battery fires.
24 Комментариев
Can we get Iphone 6s crispy wallpapers?
Ben Capehart - Ответить
Sorry Ben! We only had the iPhone 12 Pro Max to burn, which was water damaged beyond repair in the first place.
Arthur Shi -
Oh well.
Good idea using a Water Damaged iPhone 12 Pro Max!
Thanks @arthurshi For sharing the experiment
Ben Capehart -
Great post! A few quick follow-on questions: (1) What's happening internally when a battery swells up? (2) If a battery is swollen, is it still ok to attempt discharge? I.e. continue using the device or computer until the battery charge is low? (3) What's the best way to transport a swollen battery? E.g. put it in an old paint can filled with water?
bh - Ответить
Hey bh!
1. A li-po battery swells up when the electrolyte breaks down and turns into gas. The pouch acts as a containment mechanism to prevent the electrolyte from venting. The electrolyte breakdown is mostly irreversible damage.
2. We don't recommend operating the device with a swollen battery. With that said, it's normally OK to drain it down one last time. If it's a battery for a remote control toy, don't discharge it too fast, or the battery internals may heat up and increase the risk of a thermal event.
3. Transport the swollen battery in a fire-resistant container. An old paint can is totally fine. No need to fill it with water.
Arthur Shi -
I had a situation with a swollen cell in an old Samsung Tab 3 tablet. The swelling disconnected the speaker contacts (on the rear cover), so it lost audio output, the first symptom. I opened the tablet, removed the cell and took it outdoors. At a corner of the "bag", I punctured the cell with a small pin and the gas escaped harmlessly. I sealed the hole with glue ( RTV sealer also works), and replaced the cell in the tablet. It charged normal and the tablet was functional.
I have seen my sister in law's Apple Watch with its cell swollen but that damaged the watch, so she bought a new one.
rayramirez -
great videos, congrats, any word about how toxic the fume can be once it ignites?
Ronny Farfan - Ответить
How about providing some info on how to safely discharge a battery? Especially if the battery can not be discharged by the device itself.
Mark W Padgham - Ответить
Hey Mark,
To discharge a battery, you'd normally want to connect it to a properly rated load (oftentimes a resistor). The actual procedure can look pretty different based on the battery—how it's hooked up to the BMS, what kind of connectors, etc. I hope to write a guide sometime in the future on how to do this for smartphone and laptop batteries.
Arthur Shi -
Cathodes are (-) and anodes are (+). Other than that, great article!
Eric - Ответить
Hi Eric!
Oh boy! This can be a whole topic of itself in the definitions of cathode/anodes and electron flow. I admit that I'm using the cathode/anode terms loosely and inaccurately. The polarity and the terms technically depends on whether the battery is charging and discharging. In this case, I've used the cathode/anode terms as commonly used by battery manufacturers, and the (+) and (-) as commonly labeled on the battery.
Arthur Shi -
Awesome work. Educational AND entertaining. Well done guys!
Akbar - Ответить
I really enjoyed that. I haven't been able to get much support from the locals living here in Japan but I've had a swollen MacBook Pro battery, (taken out about three years ago with an fixit guide), sitting in a cupboard. Would I be right in assuming that the battery should have discharged any stored energy it had in it in that time and now should be relatively safe?
Rob Ellis - Ответить
Hi Rob,
That's a pretty good assumption that the battery is probably drained. You can try to power on the MacBook Pro without plugging it in to see if it powers on.
Arthur Shi -
I change batteries in laptops they can expand and be mainly a danger to liquid spill ex coffee but mainly warped keyboards and base covers be safe order a new one when you see any signs of a swollen battery..
Pete - Ответить
We get a lot of laptops returned with swollen batteries. It's a shame the diagnostics say the battery health is 98% even though the bottom cover has broken off the tabs that hold it in place, and sometimes the bottom cover screw insert pieces have separated from the plastic, and the touchpad buttons and other keyboard keys are no longer press-able. (They no longer depress/move down/up.)
I just run thorough diagnostics on all devices through the night (without power connected, of course) and in the morning it has shut down. I have also left it just sitting in BIOS setup mode until it's shut down.
I remove the battery, leave the cable to the motherboard in the laptop, and put packing tape over the battery's terminals, then take it to public works which has drop-offs for every kind of battery.
Phil - Ответить
Hi Phil, so to completely drain the battery, your technique is to leave it sitting in the BIOS menu? this will drain to 0%?
ubuntu_python -
Thank you for sharing!
I have some questions related with storing old unused smartphone:
1) Is discharging the phone to 25% before storing in shelf will prevent lithium battery thermal runaway?
2) Is there any article from ifixit on how to store old smartphone with lithium battery the proper way?
Charles Alva - Ответить
Hi Charles,
When you store your unused smartphone, charge it to ~60% before you shut it off. Li-ion batteries are normally happiest when they're 40-60% charged.
If you plan to use your stored smartphone in the future, it's very important to check the phone every 3-4 months and make sure the battery's not 0%. If the li-ion battery has been at 0% for an extended time, there's a good chance it was damaged. Charging a damaged li-ion battery may result in thermal runaway.
Arthur Shi -
What is the sources of information that you are using? I am not questioning the veracity but would like to see the originating research or papers that mention items such as discharging the battery until 25% to reduce thermal runaway. I can't use your article as a citation so any sources you pulled from would be helpful. Thanks.
Albert Einstein - Ответить
Hi Albert Einstein,
Great question! The 25% rule comes from in-house research and it's not a hard rule. As noted in the article, larger li-po batteries can still thermally run away even if they've been discharged to 25%. It all depends on how much energy is left in the battery and how it's shorted.
As for citable sources, the research that comes to mind is done by the DOT/FAA. Here's a paper detailing thermal runaway relating to SoC (state of charge). It's the research that defined the 30% charge limit when transporting large amounts of li-ion batteries. Note that this paper focuses on 18650 li-ion cells, which are somewhat different from li-po batteries.
For li-po batteries, here's a technical note released by the DOT/FAA detailing their findings on the effect of shorting a 70% charged li-po vs. a 30% charged li-po. They found similar results, in that 30% discharged batteries did not thermally runaway.
Arthur Shi -
I want to make use of my old iPhones rather than throwing them - they can be clocks, security cameras photo frames etc - but I don't want to leave them permanently on charge with an old Li-ion battery. Is there any way to make them run off a charger — maybe remove the lithium and just keep the battery management system connected?
John - Ответить
Hi I ned a Borad for Iphone 12 pro
Shuaibullah Mansory - Ответить
I have some old nostalgic Nokia phones (5110, 6310, 6210 and also 3310 3410 generation). How can I store them safely without the risk of fire hazard? They have Li-Ion batteries, I was thinking of storing them ~50% separately from the phone in Li-Po batteries safety bags with silica gel, should be safe enough?
Cristian G - Ответить